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The steady undertow created by waves breaking at a beach and slowly flowing
offshore can become unstable and create a train of submerged offshore migrating
vortices with shorter length scales and longer time scales than the incident waves, as
shown by Matsunaga, Takehara & Awaya (1988, 1994). These vortices rotate about
horizontal axes parallel to the shoreline. Our larger-scale laboratory experiments show
that an additional layer of vortices can exist over the water depth, with vortices near
the water surface rotating in the same direction as the wave-induced water particle
trajectories, while those located at about mid-depth rotate in the opposite direction.

A theoretical and numerical analysis shows that these vortices are due to instabilities
of the undertow. Far offshore of the surf zone, the vortex trains decay because the
velocity profile for the undertow becomes linear over depth, hence neutrally stable to
any disturbances.

1. Introduction
Waves breaking at the shoreline usually drive a nearshore circulation system,

consisting of longshore, rip, and cross-shore currents. The latter currents are the mass
transport of water to the shoreline (Stokes drift) and the so-called undertow, which
returns the water to the offshore. This undertow also plays a critical role in the
nearshore mixing (Svendsen & Putrevu 1992), particularly at the breaker line.

A number of studies on the velocities inside the surf zone have been carried
out through field and laboratory measurements to reveal the cross-shore circulation
system. Nadaoka & Kondoh (1982) made detailed laboratory measurements of the
undertow inside and outside the surf zone. They found that outside the surf zone the
undertow velocity profile has little curvature; it typically has a small seaward directed
velocity at the bed and a larger seaward oriented velocity at the trough level. Putrevu
& Svendsen (1993) applied a theoretical analysis to undertow structure outside the
surf zone and obtained a linear mean velocity profile outside the boundary layer.
These features also appear in the laboratory measurements of the velocities under
regular waves spilling on a 1:35 impermeable slope by Cox, Kobayashi & Okayasu
(1995).

Experiments on mass transport outside the surf zone by Bagnold (1947), using
two-dimensional surface waves propagating over a horizontal smooth bed, showed
a strong shoreward drift current along the bed, and a seaward one induced under
the water surface. Longuet-Higgins (1953) explained this theoretically by taking into
account the existence of a Stokes layer and viscosity. Dore (1970) found that the
presence of surface viscosity greatly enhanced the drift velocity of short waves for
interfacial waves on a clean interface. Then he pointed out that the air boundary layer
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Figure 1. Formation regions of offshore vortices from Matsunaga et al (1994): open symbols,
formation of offshore vortex; solid symbols, non-formation. Lines (a) and (b) indicate the limit
of wave steepness and H0/L0 = 4.2 × 10−2, respectively. Line (c) is the offshore border of vortex
formation.

greatly affects surface waves with long wavelength. He further concluded that the
mean Eulerian velocity near the surface directed in the onshore direction far exceeded
the magnitude of the Stokes drift. Craik (1982) later reached a similar conclusion.

Matsunaga, Takehara & Awaya (1988, 1994) discovered in a small wave tank
(12 m long, 0.4 m deep, 0.15 m wide and equipped with a sloping planar bed) that the
mean flow in the cross-shore direction just offshore of the breaker line was subject
to a remarkable instability. The mean flow in the seaward direction became unstable
and created a single layer of very large (order of the wave height) eddies slowly
rotating about a horizontal axis parallel to the shoreline. These eddies rotated in an
opposite sense to the trajectories of the wave-induced water particle motion. They
called these eddies the offshore vortex train. As the vortices migrated offshore into
greater depths, they decayed rapidly. This rotational motion contradicts the usual
assumptions of irrotational wave motion. These authors also developed a number
of empirical relationships describing the vortices. For example, they showed that the
vortices occurred regardless of the breaker type and that there was a relationship
between the relative water depth, the wave steepness, and the occurrence of the
eddies. Figure 1 shows their unified plot of the vortices formation diagram, with
tan θ denoting the beach slope, and the open symbols showing when vortices formed
in their experiments and the closed symbols denoting no eddy formation. For their
modified relative water depths ((1 + 6.4 tan θ)h/L, where h was the still water depth
and L was the wavelength) exceeding 0.18, no vortices were observed. Also, there
was a threshold wave steepness below which no eddies occur. Matsunaga et al. (1988,
1994) indicate that a shear instability may be responsible for the offshore vortex train,
but provide no theoretical analysis.

This paper examines the offshore vortex train through both experimental and
numerical approaches. First, in § 2, we describe the experiments carried out to verify the
results of Matsunaga et al. in a larger wave tank. Measurements of the wave-averaged
Eulerian velocity profile outside the surf zone were made using a sontek three-
dimensional acoustic Doppler velocimeter (ADV). Some properties of the offshore
vortex train were investigated using aniline dye as well. Then, in § 3, a linear model
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Figure 2. Schematic of experiment set-up.

Wave Water Ursell Existence
Test ADV period (s) depth (m) L (m) h/L H/L number (1+6.4 tan θ)h/L of vortices

1 2 2.0 0.303 3.276 0.0925 0.0272 0.4357 0.1094 Yes
2 1 2.0 0.310 3.330 0.0946 0.0267 0.4000 0.1119 Yes
3 3 2.0 0.275 3.132 0.0878 0.0301 0.5652 0.1039 Yes
4 1 2.0 0.313 3.323 0.0942 0.0285 0.4319 0.1114 Yes
5 3 1.4 0.270 2.067 0.1306 0.0676 0.3844 0.1545 Yes
6 1 1.4 0.381 2.353 0.1619 0.0594 0.1773 0.1915 Yes
7 3 1.1 0.310 1.507 0.2057 0.0970 0.1413 0.2433 No
8 1 1.1 0.418 1.620 0.2580 0.0900 0.0664 0.3052 No

Table 1. List of experiments.

is used to investigate these vortex trains based on a shear instability of the mean
offshore flow.

2. Experimental study
2.1. Experiment set-up

Figure 2 shows a schematic of the experimental set-up. Our experimental wave tank
(35 m long, 0.6 m deep and 0.6 m wide) is 3 times longer, 4 times wider and 1.5 times
deeper than the wave tank used by Matsunaga et al. (1988, 1994). It had a constant
depth section at the wavemaker and a sloping planar bed with 1:35 slope at the other
end. A piston wavemaker was used to generate the two-dimensional periodic surface
waves. As shown in figure 2, three ADVs were used at three different locations: one
is in the area with constant depth at least 10 m away from wavemaker, one is in the
area where the sloping bed starts, the last one is in the area with sloping bed at least
2 m away from the breaking point.

The local wave height H and wave period T were measured using capacitance
wave gauges. The local phase velocity C was calculated from the time lag of signals
from two wave gauges that were located 20 cm apart in the constant depth section
of the wave tank. The local wavelength L was then determined from the product of
the celerity and wave period.

Eight tests, numbered 1–8, exploring the effect of varying local water depth h and
wave frequencies on the offshore vortex train, were conducted as shown in table 1.

Based on the study of Matsunaga et al. (1994), tests 1–4 were designed to have the
dimensionless wave height (H/L) and dimensionless water depth (h/L) combinations
that would always generate vortices. Test 5 and test 6 were to study the cases where
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Figure 3. Dye pattern 150 wave periods after dye injection. The water wave propagates
from left to right.

the occurrence of vortices varies. Test 7 and test 8 focused on the combinations that
would lead to no vortices.

The vortex train induced offshore of the breaking point was observed by flow
visualization. Granules of water-soluble aniline blue dye was used as a tracer. Typical
flow patterns generated with a 2.0 s wave in a still water depth h = 0.297 m were
photographed through the glass sidewall of the tank using a 35 mm camera. The
direction of wave propagation was from left to right in all the photos presented below.
The vortices were also videotaped to evaluate their characteristic quantities, e.g. the
horizontal length scale of vortices, etc. These data were later used for comparison
with the theoretical predictions.

2.2. Experimental results

Figures 3–5, taken at a fixed location, show the migration of the vortex system in
the offshore direction (left) as reflected by the movement of the dye. The pictures
were taken at 2 m away downstream from the injection point 5 s apart. It can be
seen, particularly in figure 5, that there are two layers of vortices, one near the water
surface (approximately 0.05 m below the water surface), with small vortices, and the
other near the mid-depth (approximately 0.1 m below water surface), indicating the
existence of two shear layers. Vortices near the water surface rotate in the opposite
direction to vortices at mid-depth. The rotation direction of vortices near mid-depth
was observed to be counter to the wave-induced water particle trajectories, as shown
by Matsunaga et al. (1994), while the rotation direction of the upper layer of vortices
has the opposite sense. These vortices rotate slowly with respect to water particle
orbital motions, they migrate seaward slower than the undertow, they are embedded
within the orbital wave motion, and there is very little dispersion of the dye by
turbulence. The upper-layer vortices migrate at the same velocity as the lower-layer
vortices, and have the same separation distance as those in the lower layer.

In each experiment, the offshore migration velocity of the vortex uv was obtained
by determining the time taken for a vortex to move a given distance. For test 2, the
surface wave phase speed was C = 1.33 m s−1, average vortex migration speed was
uv = 0.0072 m s−1. The average time for a complete rotation of 360◦ of an eddy, Tv ,
was 21.5 s, about 10 times the surface wave period.
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Figure 4. Dye pattern 155 wave periods after dye injection.

Figure 5. Dye pattern 160.9 wave periods after dye injection.

As we will show later numerically, the existence of one or two vortex layers is
sensitive to the mean wave-induced velocity profile. Figure 6 shows the wave-averaged
mean velocity profiles measured by the ADV for the eight experiments. The velocities
were recorded through each ADV at a frequency of 50 Hz for a duration of 110 s. The
wave-averaged profile results from assuming that the measured velocities consist of
a steady wave-induced current component U, turbulent components u′, w′, the wave
orbital wave motions uw , ww , and the longer-time-scale rotational components ũ, w̃
due to the vorticies. The plotted velocities were obtained by low passing the data to
remove the wave-induced and the turbulent velocities and leaving the mean current
and the longer-time-scale components that cannot be filtered. For example, the low-
passing frequency used for tests 1 and 2 was 1.25 Hz. Rather than a straight-line
distribution over the depth, the resulting velocity profiles are curved. Changes in the
curvature of these profiles correspond to the presence of shear layers. It is seen from
figure 6 that there are two points over water depth where the second derivative of
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Figure 6. Undertow profile for each test versus non-dimensional depth: ∗, experiment data;
solid line, the smoothed velocity profile used for the numerical study.

velocity (d2U/dz2) becomes zero, implying the existence of two shear layers. Tests 7
and 8 show little curvature, but the measurements capture the relevant shear layer.

The plotted velocity data do include the influence of the vorticies on the mean
profile; however this contribution is small. The averaged product u′w′ represents the
turbulent contribution to the momentum transfer, whereas the uwww and the ũw̃
represent the wave contribution and contribution of the vortices, respectively. The
average ũw̃/uwww is less than 10%, implying that the vortex contribution to the
momentum transfer is insignificant compared to the wave contribution.

The smooth velocity profile was obtained by fitting a fifth-order polynomial to the
measured wave-averaged data. Since measurements were not taken at the bottom
or the surface, due to proximity effects and the difficulty of measuring within the
wave trough region, consideration of these boundaries is merited to determine their
influence on the final fitted profile. One option is to leave these points free and let
the fitting find values there. However, due to the high order of the fitting polynomial,
this could lead to unrealistic values at these end points. At the bottom, we can fix the
velocity approximately to that of the theoretical value at the top of the boundary layer
U = 3

4
σa2k cosech2(kh), Craik (1982), where a is surface wave amplitude, k is surface

wavenumber, and σ = 2π/T . Numerical experiments show that this bottom boundary
velocity has no real influence on the fitting and our subsequent instability calculation.
At the mean surface, the theoretical boundary condition is dU/dz = 2σa2k2 coth2(kh),
Craik (1982). However, if the value of the surface velocity were arbitrarily changed
by ±20%, the calculated instability wavenumber would change at most 6%, leading
us to argue that the results are not very sensitive to the surface value either.
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Table 1 also shows the Ursell number Ur for all eight tests. The Ursell number
represents the ratio of wave nonlinearity to frequency dispersion. Table 1 shows that
tests 1–6, in which vortices were observed, have higher Ursell numbers, while tests 7
and 8, in which no vortices were noticed, have much lower Ursell number. Thus the
nonlinearity of the surface wave is important for the presence of vortices, as shown
by Matsunaga et al. (line (c) in figure 1).

3. Theoretical study
3.1. Theory

The vortices are embedded in orbital wave motion, and are considered to be the
instabilities of the mean flow with longer time scales and shorter length scales than
the incident waves. The governing equations for the longer-time-scale motion can be
obtained by averaging first over the turbulence time scale, and then over the period
of the incident wave. Next, through a perturbation analysis, the governing equations
for the mean flow are derived at the zeroth order, and the stability equations of the
interaction between disturbances and mean flow are generated at the first order.

The flow offshore of the surf zone is usually divided vertically into three regions:
the surface boundary layer region, the core region, and the bottom boundary layer
region. The Navier–Stokes equations and continuity equation for a homogeneous and
incompressible fluid are adopted for this analysis. The coordinate x is in the wave
propagation direction, z is vertically upward from the origin located at the mean
free surface. All variables are non-dimensional: x, z are normalized by the water
depth (Lref). Uref , which is the maximum velocity of the undertow, is used to non-
dimensionalize all fluid velocities. Time t is normalized by a transit time associated
with the undertow (Lref/Uref). As is customary, pressure is measured in terms of
ρU2

ref . The relevant Reynolds number is Re = UrefLref/ν � 1 where ν denotes the
kinematic viscosity.

To treat the turbulence time scale, we introduce the Reynolds decomposition
variables: u = û + u′, w = ŵ + w′ and p = p̂ + p′, wherêdenotes ensemble average,

and û′ = 0, ŵ′ = 0 and p̂′ = 0. The governing equations can be ensemble averaged
over a short period of time to obtain the Reynolds–Navier–Stokes equations:

∂û

∂t
+ û

∂û

∂x
+ ŵ

∂û

∂z
= −∂p̂

∂x
− ∂û′2

∂x
− ∂û′w′

∂z
+

1

Re

(
∂2û

∂x2
+
∂2û

∂z2

)
, (3.1)

∂ŵ

∂t
+ û

∂ŵ

∂x
+ ŵ

∂ŵ

∂z
= −∂p̂

∂z
− ∂û′w′

∂x
− ∂ŵ′2

∂z
+

1

Re

(
∂2ŵ

∂x2
+
∂2ŵ

∂z2

)
, (3.2)

∂û

∂x
+
∂ŵ

∂z
= 0. (3.3)

The boundary conditions at the free surface are that the tangential stress is zero

∂û

∂z
+
∂ŵ

∂x
= 0 at z = 0, (3.4)

and that the normal stress is zero

− Pa + 2
1

Re

∂ŵ

∂z
= 0 at z = 0, (3.5)

where Pa is the atmospheric pressure.
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The boundary conditions at the rigid bottom are

û = ŵ = 0 at z = −h. (3.6)

The three correlation terms −û′2, −û′w′ and −ŵ′2 are turbulent stresses.
For convenience, thêsymbol for u and w is omitted in the following. Based on the

results from the experiments, the vortex has a much longer time scale than the surface
waves. Therefore, we can assume that the Reynolds-averaged velocities consist of a
steady wave-induced current component U(x, z), the wave orbital motions uw(x, z, t),
ww(x, z, t), and a higher-order longer-time-scale perturbation component ũ(x, z, t),
w̃(x, z, t):

u = U(x, z) + uw(x, z, t) + εũ(x, z, t), (3.7)

w = ww(x, z, t) + εw̃(x, z, t), (3.8)

p = p(x, z) + εp̃(x, z), (3.9)

where ε is an arbitrary small constant which may be interpreted as a measure of the
magnitude of the disturbance.

Gathering all the terms that do not depend on ε, the lowest-order governing
equations for the wave-induced water particle velocities become

∂uw

∂t
+ (U + uw)

∂(U + uw)

∂x
+ ww

∂(U + uw)

∂z
= −∂p

∂x
− ∂û′2

∂x
− ∂û′w′

∂z

+
1

Re

(
∂2(U + uw)

∂x2
+
∂2(U + uw)

∂z2

)
, (3.10)

∂ww

∂t
+ (U+uw)

∂ww

∂x
+ww

∂ww

∂z
= −∂p

∂z
− ∂û

′w′

∂x
− ∂ŵ

′2

∂z
+

1

Re

(
∂2ww

∂x2
+
∂2ww

∂z2

)
, (3.11)

∂(U + uw)

∂x
+
∂ww

∂z
= 0, (3.12)

with boundary conditions

∂U + uw

∂z
+
∂ww

∂x
= Pa + 2

1

Re

∂ww

∂z
= 0 at z = 0, (3.13)

U + uw = ww = 0 at z = −h. (3.14)

Averaging the above equations over the period of the incident wave gives the

equation for the mean flow. If the turbulent stresses −û′2, −û′w′ and −ŵ′2 are not
considered (Craik 1982), a steady mean Eulerian velocity U(z) satisfies

1

Re

d2U

dz2
=

d

dz
(uwww) +

dp

dx
, (3.15)

where uwww denotes the time-averaged Reynolds stress τxz resulting from the linear
wave field. For zero mass flux, Craik obtained the corresponding velocity distribution
in the core region:

U(z) = 1
2
(σ/2µ)1/2σa2k coth2(kh)(z + h+ 3

4
d−1(z2 − h2)). (3.16)

This undertow profile, however, does not contain inflection points as seen in our
experiments. Therefore, we will use the measured undertow profiles in our numerical
calculations that follow.
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At order ε, we obtain equations for the longer-time-scale velocities ũ, w̃:

∂ũ

∂t
+ (U + uw)

∂ũ

∂x
+ ũ

∂(U + uw)

∂x
+ w̃

∂(U + uw)

∂z
+ ww

∂ũ

∂z

= −∂p̃
∂x

+
1

Re

(
∂2ũ

∂x2
+
∂2ũ

∂z2

)
, (3.17)

∂w̃

∂t
+ (U + uw)

∂w̃

∂x
+ ũ

∂ww

∂x
+ w̃

∂ww

∂z
+ ww

∂w̃

∂z
= −∂p̃

∂z
+

1

Re

(
∂2w̃

∂x2
+
∂2w̃

∂z2

)
(3.18)

∂ũ

∂x
+
∂w̃

∂z
= 0, (3.19)

with boundary conditions

∂ũ

∂z
+
∂w̃

∂x
=
∂w̃

∂z
= 0 at z = 0, (3.20)

ũ = w̃ = 0 at z = −h. (3.21)

We also average (3.17)–(3.19) over a wave period. Because ũ and w̃ have a long
time scale, their time derivatives can be treated as constants over one wave period,
and the average of the products are: rsw = 0, rU = rU, for r = ũ, w̃ and s = u, w. The
steady current component U is assumed not to be a function of x.

Then (3.17)–(3.19) become

∂ũ

∂t
+U

∂ũ

∂x
+ w̃

∂U

∂z
= −∂p̃

∂x
+

1

Re

(
∂2ũ

∂x2
+
∂2ũ

∂z2

)
, (3.22)

∂w̃

∂t
+U

∂w̃

∂x
= −∂p̃

∂z
+

1

Re

(
∂2w̃

∂x2
+
∂2w̃

∂z2

)
, (3.23)

∂ũ

∂x
+
∂w̃

∂z
= 0. (3.24)

Let us introduce a stream function ψ representing the long-period perturbation, such
that

ũ =
∂ψ

∂z
, w̃ = −∂ψ

∂x
and

ψ(x, z, t) = φ(z)eiα(x−ct),

where α is a wavenumber and c is the wave phase speed. Substituting ψ into the
above equations yields the Orr–Sommerfeld equation for φ:

1

iαRe
(D2 − α2)2φ = (U − c)(D2 − α2)φ−U ′′φ, (3.25)

where Dφ = φ′.
The boundary conditions associated with (3.25) are

φ′′ + α2φ = φ′ = 0 at z = 0, (3.26)

φ = φ′ = 0 at z = −h. (3.27)

The boundary condition at z = 0 indicates that normal and shear stress are zero at
the free surface. At the bottom, the rigid boundary condition applies.

The Orr–Sommerfeld equation describes shear instabilities (e.g. Drazin & Reid
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1981). Solutions of this equation will be progressive waves with phase velocity equal
to the real part of c, which is the speed with which the entire perturbation pattern
moves in the off-shore direction. For those values of the wavenumber for which c has
a negative imaginary component, the solution has an exponentially growing amplitude
which indicates that the cross-shore velocity profile, U(z), is unstable with respect to
that particular mode. For the case of plane Poiseuille flow (Lin 1955), experiments
and experience suggest that instability can be found only for large values of αRe. The
minimum critical Reynolds number is 5300, based on the maximum velocity at the
centre of the channel and its half-width.

This Sturm–Liouville problem is difficult to solve analytically for an arbitrary
velocity distribution U(z). Therefore, a numerical approach was used.

3.2. Numerical formulation

Equation (3.25) was solved by finite differences. Representing the z-axis as z = j∆z,
j = 1, 2, . . . , N, U(z) as Uj and φ(z) as φj , we can represent (3.25) as

a1φj+2 + a2φj+1 + a3φj + a4φj−1 + a5φj−2

= c(φj+1 − (2 + ∆z2α2)φj + φj−1), j = 1, 2, . . . , N, (3.28)

where

a1 = − 1

iαRe∆z2
, a2 =

4

iαRe∆z2
+

2α

iRe
+Uj,

a3 = − 6

iαRe∆z2
− 4α

iRe
− α3∆z2

iRe
− ((2 + ∆z2α2)Uj + (Uj+1 − 2Uj +Uj−1)),

a4 =
4

iαRe∆z2
+

2α

iRe
+Uj, a5 = − 1

iαRe∆z2
.

The same procedure can be applied to the boundary conditions. Applying this
equation to all the j points and the boundary conditions yields a matrix equation:

Aφ = cBφ. (3.29)

Here, A and B are N × N matrices and φ is a vector of size N. For the prescribed
boundary conditions, this equation can be solved only for certain values of c, i.e. the
eigenvalues. These eigenvalues of the matrix equation are equivalent to eigenvalues
of (3.25). For each value of the wavenumber α, (3.29) will yield N eigenvalues.
Eigenvalues with an imaginary component are of particular interest because they
yield exponentially growing waves.

In cases where more than one such unstable eigenvalue is present, it is assumed
that the one with the largest imaginary component will dominate the instability of
that wave number. This corresponds to the point of maximum αcim. The growth rate
αcim as a function of the instability wavenumber is shown in figure 7 for the undertow
velocity of test 1; a comparison with the experimental study will be shown in the
next section. If, for a particular value of α, all the eigenvalues are real, this implies
that the cross-shore current is stable to disturbances with the wavenumber α.

Using the undertow velocities U measured in our experiments (i.e. the fitted velocity
profiles based on the experiment data as shown in figure 6) and the relevant Reynolds
number Re = UrefLref/ν for each case, the numerical approach was used to predict
the vortices generated under flow conditions similar to the cases in the experimental
study. The numerical predictions were then compared with the results measured in
the experimental study. The comparisons and discussion are presented in the next
section.
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Figure 7. Frequency–wavenumber plots of the shear instability for the test 1,
T = 2.0 s, h = 0.303 m.

Test Experiment Numerical result Matsunaga et al. (1994)

1 0.386 0.391 0.437
2 0.275 0.350 0.463
3 0.330 0.331 0.358
4 0.279 0.347 0.431
5 0.195 0.261 0.157
6 0.316 0.370 0.252

Table 2. Comparison between the numerical solution and experimental results for the horizontal
spacing between vortices (m).

Near water surface Near mid-depth

Test Experiment Numerical result Experiment Numerical result

1 0.068 0.060 0.108 0.121
2 0.052 0.063 0.119 0.126
3 0.065 0.066 0.114 0.137
4 0.061 0.061 0.130 0.128
5 0.082 0.076 0.149 0.151
6 0.106 0.092 0.172 0.168

Table 3. Comparison between the numerical solution and experimental results for vertical
distances of vortices from the mean water level (m).

4. Numerical results and discussion
While the instability occurs over a range of frequencies and wavenumber, there

will be a single fastest growing wave that we can use to determine characteristic
time and length scales. This corresponds to the point of maximum αcim (figure 7).
Using flow conditions similar to those in the experiments, horizontal length scales for
the fastest growing instabilities calculated from the numerical model are shown in
table 2 with the corresponding experimental results. The experimental and numerical
results of the vertical distance of the instability from the mean water level are shown
in table 3. It is seen that there is a good agreement between the experiment and
numerical model. Tests 7 and 8 are not shown because, for any value of α, all
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Figure 8(a–c). For caption see facing page.

the eigenvalues are real, which means that the undertow profile is neutrally stable.
Clearly, the linear perturbation model can predict the position and length scale of
the vortices.

Knowing the wavenumber of the unstable mode α, its speed of propagation c
and φ, we can now calculate the spatial structure of the wave motions. Figure 8
shows the calculated total stream function for one surface wave wavelength using
the undertow velocity profile and water depth for each experiment. The stream-
lines are obtained by summing the mean velocity and the unstable wave mode.
Note that these figures show the linear solution for the unstable wave mode and
therefore do not show the progression to the fully developed eddies seen in the
experiments. Figure 9 shows the spatial patterns of the streamlines for a quarter
surface wave and the associated velocities. Vortices near the water surface rotate
in the opposite direction to vortices at mid-depth. For example, for the surface
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Figure 8. Stream function pattern of the instability over one surface wavelength, The surface wave
propagates to the left: (a) test 1, (b) test 2, (c) test 3, (d) test 4, (e) test 5, (f) test 6.

wave propagating to the right, the rotation direction of vortices near mid-depth was
counterclockwise, while the rotation direction of vortices near surface was clockwise.
The unstable wave progresses in the offshore direction at both levels, similar to
our laboratory observations. It is also shown that the unstable wavelength is much
shorter than the surface wavelength. The two vortex layers shown in figure 8 indi-
cate the existence of two shear layers, which is also confirmed in the experimental
study.

Next, we examine the results of Matsunaga et al. (1988, 1994). The shape of a
particular velocity profile based on their experiment, where T = 1.06 s, tan θ = 1/23.5
(figure 10) was obtained based on the deformation of dye lines shown in Matsunaga et
al (1994). Using this, figure 11 gives the calculated spatial form of the stream function
for one surface wave wavelength which shows a layer of eddies near mid-depth which
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Figure 9. The spatial pattern of surface-wave-averaged total velocity field for (a) test 2 and
(b) test 3, over a quarter surface wavelength. The surface wave propagates to the left.
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Figure 11. Stream function pattern of the instability over one surface wavelength from
Matsunaga et al. (1988, 1994). The surface wave propagates to the right.

was observed by them. There are likely to be errors in our assumed velocity profile,
having taken it from their figure. However, errors resulting in shifting the mean of
the velocity profile around zero cause the eddies to appear either higher or lower in
the water column, yet they always occur in a single layer.

5. Conclusions
Laboratory experiments and a numerical study show that the steady undertow

outside the surf zone can be unstable to slow oscillations that are below water surface
with shorter length scale and longer time scale than the incident surface waves. These
instabilities lead to large eddies identified by Matsunaga et al. (1988, 1994) as the
offshore vortex train.

In our experiment, two vortex layers exist over the water depth, because of the
existence of two shear layers, rather than one as observed by Matsunaga et al. (1988,
1994). After reaching a particular offshore position the vortices decay because the
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velocity profile for undertow for that point becomes linear and neutrally stable to
any disturbance.

The rotation of the eddies near the water surface is in the same direction as the
orbital trajectories of the wave-induced water particle motions and in the opposite
direction to the rotation of the eddies at mid-depth.

Using flow conditions similar to those in the experiments, horizontal length scales
and vertical positions for the fastest growing instabilities calculated from the numerical
model are shown with the corresponding experimental results. There is a good
agreement between the experiment and numerical model. It may be concluded that
the linear stability model can predict the occurrence of the vortices from the undertow
profile.

The existence and the number of vortex layers are related to the mean velocity
profile, which depends on the experimental conditions, such as water depth, wave
height, wave nonlinearity and viscosity, etc. At present we do not have any quantitative
explanation of when this will happen, since we do not have a theoretical mean velocity
profile with shear layers.
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